organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Monika Haberecht, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.035 wR factor = 0.112 Data-to-parameter ratio = 27.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Chloromethyl)triethylammonium chloride monohydrate

The title compound, $C_7H_{17}ClN^+ \cdot Cl^- \cdot H_2O$, is composed of discrete (chloromethyl)triethylammonium cations, Cl^- anions and water molecules, which are held together by $O-H \cdot \cdot \cdot Cl$ hydrogen bonds.

Received 6 June 2006 Accepted 8 June 2006

Comment

Treatment of a solution of the diboronium, (I) (Haberecht, 2006), and 4,4'-dimethyl-2,2'-bipyridine in CH_2Cl_2 with NEt_3 led to the formation of the title compound, (II), $(Et_3NCH_2Cl)^+(Cl)^-\cdot H_2O$.

Compound (II) consists of discrete (chloromethyl)triethylammonium cations, Cl⁻ anions and water molecules. Geometric parameters adopt normal values (Cambridge Structural Database, Version 5.27, updated May 2006; *MOGUL* Version 1.1; Allen, 2002). Two water molecules and two Cl⁻ anions form a hydrogen-bonded eight-membered centrosymmetric ring (Fig. 2). In addition to these classical hydrogen bonds, there are also intramolecular C–H···Cl contacts, as well as intermolecular C–H···Cl and C–H···Cl contacts (Table 1).

Experimental

To a solution of diboronium dibromide, (I) (1 mmol), and 4,4'dimethyl-2,2'-bipyridine (0.7 g, 4 mmol) in CH₂Cl₂ (40 ml), NEt₃ (1.5 ml) was added. (Et₃NCH₂Cl)⁺(Cl)⁻·H₂O was obtained as a sideproduct. X-ray quality crystals of the title compound were grown from a solution in CH₂Cl₂ at ambient temperature.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

Crystal data

 $C_7H_{17}CIN^+ \cdot CI^- \cdot H_2O$ $M_r = 204.13$ Monoclinic, $P2_1/n$ a = 11.1642 (8) Å b = 7.9798 (4) Å c = 12.3239 (9) Å $\beta = 106.087$ (6)° V = 1054.92 (12) Å³

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{\min} = 0.764, T_{\max} = 0.848$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.112$ S = 1.062977 reflections 108 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1D \cdots Cl1$	0.83 (1)	2.49 (1)	3.3051 (13)	170 (3)
$O1-H1C\cdots Cl1^{i}$	0.83 (1)	2.34 (1)	3.1660 (13)	172 (3)
$C7-H7A\cdots O1$	0.99	2.36	3.3131 (19)	161
$C7-H7B\cdots O1^{ii}$	0.99	2.57	3.429 (2)	145
$C1-H1A\cdots Cl1^{iii}$	0.99	2.75	3.6809 (15)	156
$C1-H1B\cdots Cl1^{iv}$	0.99	2.76	3.7471 (15)	176
$C3-H3A\cdots Cl7$	0.99	2.72	3.1677 (15)	108
$C5-H5B\cdots Cl7$	0.99	2.75	3.0704 (18)	100
Symmetry codes: $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (if	(i) $-x + 1$, v) $-x + \frac{3}{2}$, $y + \frac{1}{2}$	-y, -z + 1; $-z + \frac{1}{2}.$	(ii) $-x + \frac{1}{2}, y + \frac{1}{2$	$-z + \frac{1}{2};$ (iii)

H atoms bonded to C atoms were located in a difference map but were subsequently refined with fixed individual isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C), \text{ or } 1.5U_{eq}(C_{methyl})]$ using a riding model, with C-H = 0.98 and 0.99 Å for methyl and methylene groups, respectively. The water H atoms were refined with a distance restraint of O-H = 0.84 (1) Å.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Z = 4 $D_x = 1.285 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.57 \text{ mm}^{-1}$ T = 100 (2) K Block, colourless $0.50 \times 0.40 \times 0.30 \text{ mm}$

26921 measured reflections 2977 independent reflections 2664 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 29.7^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0699P)^2 \\ &+ 0.5992P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Figure 1

A perspective view of the asymmetric unit of (II), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50%probability level. The dashed line indicates a hydrogen bond.

Figure 2

A packing diagram for (II), viewed along the a axis. H atoms bonded to C atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Blessing, R. H. (1995). *Acta Cryst.* A**51**, 33–38. Haberecht, M. (2006). PhD Thesis, Universität Frankfurt, Germany. Sheldrick, G. M. (1990). *Acta Cryst.* A**46**, 467–473.

- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.